Amniocytes can serve a dual function as a source of iPS cells and feeder layers

نویسندگان

  • Raymond M. Anchan
  • Philipp Quaas
  • Behzad Gerami-Naini
  • Hrishikesh Bartake
  • Adam Griffin
  • Yilan Zhou
  • Daniel Day
  • Jennifer L. Eaton
  • Liji L. George
  • Catherine Naber
  • Annick Turbe-Doan
  • Peter J. Park
  • Mark D. Hornstein
  • Richard L. Maas
چکیده

Clinical barriers to stem-cell therapy include the need for efficient derivation of histocompatible stem cells and the zoonotic risk inherent to human stem-cell xenoculture on mouse feeder cells. We describe a system for efficiently deriving induced pluripotent stem (iPS) cells from human and mouse amniocytes, and for maintaining the pluripotency of these iPS cells on mitotically inactivated feeder layers prepared from the same amniocytes. Both cellular components of this system are thus autologous to a single donor. Moreover, the use of human feeder cells reduces the risk of zoonosis. Generation of iPS cells using retroviral vectors from short- or long-term cultured human and mouse amniocytes using four factors, or two factors in mouse, occurs in 5-7 days with 0.5% efficiency. This efficiency is greater than that reported for mouse and human fibroblasts using similar viral infection approaches, and does not appear to result from selective reprogramming of Oct4(+) or c-Kit(+) amniocyte subpopulations. Derivation of amniocyte-derived iPS (AdiPS) cell colonies, which express pluripotency markers and exhibit appropriate microarray expression and DNA methylation properties, was facilitated by live immunostaining. AdiPS cells also generate embryoid bodies in vitro and teratomas in vivo. Furthermore, mouse and human amniocytes can serve as feeder layers for iPS cells and for mouse and human embryonic stem (ES) cells. Thus, human amniocytes provide an efficient source of autologous iPS cells and, as feeder cells, can also maintain iPS and ES cell pluripotency without the safety concerns associated with xenoculture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Induced Pluripotent Stem Cells on Autologous Feeders

BACKGROUND For therapeutic usage of induced Pluripotent Stem (iPS) cells, to accomplish xeno-free culture is critical. Previous reports have shown that human embryonic stem (ES) cells can be maintained in feeder-free condition. However, absence of feeder cells can be a hostile environment for pluripotent cells and often results in karyotype abnormalities. Instead of animal feeders, human fibrob...

متن کامل

Neural Stem Cells Achieve and Maintain Pluripotency without Feeder Cells

BACKGROUND Differentiated cells can be reprogrammed into pluripotency by transduction of four defined transcription factors. Induced pluripotent stem cells (iPS cells) are expected to be useful for regenerative medicine as well as basic research. Recently, the report showed that mouse embryonic fibroblasts (MEF) cells are not essential for reprogramming. However, in using fibroblasts as donor c...

متن کامل

Cryopreserving and recovering of human iPS cells using complete Knockout Serum Replacement feeder-free medium.

The discovery in 2006 that human and mouse fibroblasts could be reprogrammed to generate iPS cells with qualities remarkably similar to embryonic stem cells has created a valuable new source of pluripotent cells for drug discovery, cell therapy, and basic research. GIBCO media and reagents have been at the forefront of pluripotent stem cell research for years. Knockout DMEM supplemented with Kn...

متن کامل

Human amniotic epithelial cell feeder layers maintain iPS cell pluripotency by inhibiting endogenous DNA methyltransferase 1

Maintaining induced pluripotent stem (iPS) cells in an undifferentiated, self-renewing state during long-term cultivation is, at present, a major challenge. We previously showed that human amniotic epithelial cells (HuAECs) were able to provide a good source of feeder cells for mouse and human embryonic or spermatogonial stem cells; however, the epigenetic mechanisms have not been elucidated. I...

متن کامل

Low microRNA-199a expression in human amniotic epithelial cell feeder layers maintains human-induced pluripotent stem cell pluripotency via increased leukemia inhibitory factor expression.

Human-induced pluripotent stem (iPS) cells share the same key properties as embryonic stem cells, and may be generated from patient- or disease-specific sources, which makes them attractive for personalized medicine, drug screens, or cellular therapy. Long-term cultivation and maintenance of normal iPS cells in an undifferentiated self-renewing state is a major challenge. Our previous studies h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2011